DrJ is an ISO/IEC 17065 accredited product certification body through ANSI Accreditation Services.

DrJ provides certified evaluations that are signed and sealed by a P.E.

DrJ's work is backed up by professional liability insurance.

DrJ is fully compliant with IBC Section 1703.
Technical Evaluation Report (TER)

1.7. Requiring an evaluation report from a specific organization (ICC-ES, IAPAMO, CCMC, DrJ, etc.) can be viewed as discriminatory and is a violation of international, federal, state, provincial and local anti-trust and free trade regulations.

2. Applicable Codes and Standards:

2.2. 2009, 2012 and 2015 International Residential Code (IRC)
2.5. ASTM D1662 – Standard Test Method for Apparent Density of Rigid Cellular Plastics
2.7. ASTM D2126 – Standard Test Method for Response of Rigid Cellular Plastics to Thermal and Humid Aging
2.9. ASTM D6226 – Standard Test Method for Open Cell Content of Rigid Cellular Plastics
2.11. ASTM E96 – Standard Test Methods for Water Vapor Transmission of Materials
2.15. UL 723 – Standard Test Method for Surface Burning Characteristics of Building Materials

3. Performance Evaluation:

3.1. IBC and IRC Compliance

3.1.1. This TER assesses Icynene Classic Ultra, Classic Ultra Select and Classic Plus for the following:

3.1.1.1. Physical properties of the product in accordance with the standards listed in Section 2.
3.1.1.2. Surface burning characteristics complying with the provisions of IBC Section 2603.3 and IRC Section R316.3.
3.1.1.3. Thermal performance (R-values) complying with the provisions of IRC Section N1102 and IECC Section 402.
3.1.1.4. Use in unvented attic spaces and crawlspaces without a thermal barrier in accordance with IBC Section 2603.9\(^2\) and IRC Sections R316.4 and R316.6\(^3\).
3.1.1.5. Use without a thermal barrier in accordance with IBC Section 2603.3 and IRC Section R316.3 when No-Burn\(^\text{®} \) Plus ThB intumescent coating is applied.
3.1.1.6. Air permeability in accordance with IRC Section N1102.4, and IECC Sections C402.5 and R402.4\(^4\).

3.2. Use in fire-resistance rated construction is outside the scope of this evaluation.

\(^1\) Unless otherwise noted, all references in this code-compliant technical evaluation report (TER) are from the 2015 version of the IBC and IRC codes and the standards referenced therein. This product also complies with the 2000-2012 versions of the IBC and IRC and the standards referenced therein. As required by law, where this TER is not approved, the building official shall respond in writing, stating the reasons this TER was not approved. For variations in state and local codes, if any, see Section 8.

\(^2\) 2012 IBC Section 2603.10

\(^3\) 2015 IRC Section R316.4 includes 2\(\frac{1}{2}\)" (18.2 mm) wood structural panel.

\(^4\) 2012 IECC Section C402.4
3.3. Any code compliance issues not specifically addressed in this section are outside the scope of this evaluation.

4. Product Description and Materials:

![Figure 1: Icynene Classic Ultra & Classic Plus SPF in Unvented Attics](image)

4.1. Icynene Classic Ultra, Classic Ultra Select and Classic Plus are two-component, open-cell SPF insulation products.

4.1.1. Classic Ultra and Classic Ultra Select have a density of 0.5 pounds per cubic foot (pcf) (8 kg/m³).

4.1.2. Classic Plus has a density of 0.7 pounds per cubic foot (pcf) (11 kg/m³).

4.2. The two components of Icynene low density SPF are:
- Component A: MDI/pMDI isocyanate
- Component B: proprietary resin

4.2.1. These two components are combined at the point of spray application.

5. Applications:

5.1. General

5.1.1. Icynene Classic Ultra, Classic Ultra Select and Classic Plus insulation are used in the following applications:

5.1.1.1. Thermal insulation in buildings constructed in accordance with the IBC or IRC.

5.1.1.2. Sealant for penetrations as part of an air barrier system.

5.1.2. Where fire resistance rated construction is required, contact the manufacturer for more information.

5.2. Surface Burning Characteristics

5.2.1. Icynene Classic Ultra, Classic Ultra Select and Classic Plus have the surface burning characteristics as shown in Table 1.

<table>
<thead>
<tr>
<th>Product</th>
<th>Flame Spread</th>
<th>Smoke Developed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Icynene Classic Ultra & Classic Ultra Select<sup>1</sup></td>
<td>< 25</td>
<td>< 450</td>
</tr>
<tr>
<td>Icynene Classic Plus<sup>2</sup></td>
<td>< 25</td>
<td>< 450</td>
</tr>
</tbody>
</table>

1. Tested in accordance with ASTM E84/UL723 at a thickness of 6".
2. Tested in accordance with ASTM E84/UL723 at a thickness of 4".

5.3. Thermal Resistance

5.3.1. Icynene low density SPF has the thermal resistance as defined in Table 2.
<table>
<thead>
<tr>
<th>Thickness</th>
<th>Thermal Resistance (R-values) (h·ft.²·°F/Btu)</th>
<th>Thermal Resistance (U-factors) (Btu/(h·ft.²·°F))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classic Ultra & Classic Ultra Select</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1"</td>
<td>3.7</td>
<td>0.270</td>
</tr>
<tr>
<td>2"</td>
<td>7.4</td>
<td>0.135</td>
</tr>
<tr>
<td>3"</td>
<td>11</td>
<td>0.093</td>
</tr>
<tr>
<td>3.5"</td>
<td>13</td>
<td>0.079</td>
</tr>
<tr>
<td>4"</td>
<td>14</td>
<td>0.069</td>
</tr>
<tr>
<td>5"</td>
<td>18</td>
<td>0.056</td>
</tr>
<tr>
<td>5.5"</td>
<td>20</td>
<td>0.051</td>
</tr>
<tr>
<td>6"</td>
<td>22</td>
<td>0.046</td>
</tr>
<tr>
<td>7"</td>
<td>25</td>
<td>0.039</td>
</tr>
<tr>
<td>7.5"</td>
<td>27</td>
<td>0.037</td>
</tr>
<tr>
<td>8"</td>
<td>29</td>
<td>0.035</td>
</tr>
<tr>
<td>9"</td>
<td>32</td>
<td>0.031</td>
</tr>
<tr>
<td>9.5"</td>
<td>34</td>
<td>0.029</td>
</tr>
<tr>
<td>10"</td>
<td>36</td>
<td>0.028</td>
</tr>
<tr>
<td>11.5"</td>
<td>41</td>
<td>0.024</td>
</tr>
<tr>
<td>13.5"</td>
<td>49</td>
<td>0.021</td>
</tr>
<tr>
<td>14"</td>
<td>50</td>
<td>0.020</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Classic Plus</th>
<th>Thermal Resistance (R-values) (h·ft.²·°F/Btu)</th>
<th>Thermal Resistance (U-factors) (Btu/(h·ft.²·°F))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1"</td>
<td>4</td>
<td>0.250</td>
</tr>
<tr>
<td>2"</td>
<td>8</td>
<td>0.125</td>
</tr>
<tr>
<td>3"</td>
<td>12</td>
<td>0.083</td>
</tr>
<tr>
<td>3.5"</td>
<td>14</td>
<td>0.071</td>
</tr>
<tr>
<td>4"</td>
<td>16</td>
<td>0.063</td>
</tr>
<tr>
<td>5"</td>
<td>20</td>
<td>0.050</td>
</tr>
<tr>
<td>5.5"</td>
<td>22</td>
<td>0.045</td>
</tr>
<tr>
<td>6"</td>
<td>24</td>
<td>0.042</td>
</tr>
<tr>
<td>7"</td>
<td>28</td>
<td>0.036</td>
</tr>
<tr>
<td>7.5"</td>
<td>30</td>
<td>0.033</td>
</tr>
<tr>
<td>8"</td>
<td>32</td>
<td>0.031</td>
</tr>
<tr>
<td>9"</td>
<td>36</td>
<td>0.028</td>
</tr>
<tr>
<td>9.5"</td>
<td>38</td>
<td>0.026</td>
</tr>
<tr>
<td>10"</td>
<td>40</td>
<td>0.025</td>
</tr>
<tr>
<td>11.5"</td>
<td>46</td>
<td>0.022</td>
</tr>
<tr>
<td>13.5"</td>
<td>54</td>
<td>0.019</td>
</tr>
<tr>
<td>14"</td>
<td>56</td>
<td>0.018</td>
</tr>
</tbody>
</table>

1. Tested at a mean temperature of 75° F.
2. R-values are calculated from testing at 1" and 3.5" thickness. Calculated R-values over 10 are rounded to the nearest integer.

Table 2: Classic Ultra, Classic Ultra Select & Classic Plus Thermal Resistance Properties

5.4. **Air Permeability**

5.4.1. Icynene Classic Ultra, Classic Ultra Select and Classic Plus have the air permeability characteristics shown in Table 3 and, therefore, are an air-impermeable insulation in accordance with IRC Sections R202 and R806.5.
Icynene Classic Ultra & Classic Ultra Select\(^{1,3}\) & Icynene Classic Plus\(^{2,3}\)

<table>
<thead>
<tr>
<th>Material</th>
<th>Permeance ((\text{L/s.m}^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Icynene Classic Ultra & Classic Ultra Select(^{1,3}) & Icynene Classic Plus(^{2,3})</td>
<td>< 0.02</td>
</tr>
</tbody>
</table>

1. Sprayed to a minimum thickness of 1.75”
2. Sprayed to a minimum thickness of 3”
3. Tested in accordance with ASTM E2178.
4. Liter per second per square meter when tested at a pressure differential of 75 Pa.

Table 3: Classic Ultra, Classic Ultra Select & Classic Plus Air Barrier Material Properties

5.5. Unvented Attic and Unvented Enclosed Rafter Assemblies

5.5.1. General

5.5.1.1. Icynene Classic Ultra, Classic Ultra Select and Classic Plus are approved for use in unvented attic and unvented, enclosed rafter assemblies in accordance with *IBC Section 1203.3* provided the following conditions are met:

5.5.1.1.1. The attic space is completely within the building thermal envelope.

5.5.1.1.2. No interior Class I vapor retarders are installed on the ceiling side (attic floor) of the unvented attic assembly or on the ceiling side of the unvented, enclosed roof framing assembly.

5.5.1.1.3. Where wood shingles or shakes are used, a minimum ¼ inch (6.4 mm) vented airspace separates the shingles or shakes and the roofing underlayment above the structural sheathing.

5.5.1.1.4. In Climate Zones 5, 6, 7 and 8, a Class III vapor retarder coating or covering in direct contact with the underside of the insulation shall be installed.

5.5.1.1.5. The insulation shall be installed in direct contact with the underside of the structural sheathing.

5.5.1.1.6. Where other air-permeable insulation is used in conjunction with Icynene Classic Ultra, Classic Ultra Select or Classic Plus, the Icynene Classic Ultra, Classic Ultra Select or Classic Plus shall be installed in the thickness required by *IBC Table 1203.3* for condensation control.

5.5.1.2. Icynene Classic Ultra, Classic Ultra Select and Classic Plus shall be separated from the building interior by a thermal barrier consisting of a minimum ½” gypsum wallboard or equivalent in accordance with *IBC Section 2603.4* or *IRC Section R316.4*, except in unventilated attics and crawlspaces as described in Sections 5.5.1.3 and 5.5.1.4.

5.5.2. Application in an Unvented Attic without a Prescriptive Thermal Barrier or Ignition Barrier

5.5.2.1. When Icynene Classic Ultra, Classic Ultra Select and Classic Plus are applied in unvented attics conforming to *IRC Section R806.5* and as shown in *Figure 2*, the:

5.5.2.1.1. SPF shall be applied to the underside of roof sheathing to a minimum thickness of 3.5” (89 mm).

5.5.2.1.2. Roof rafter or truss top chord member edges may be left exposed.

5.5.2.1.3. SPF shall be applied to vertical wall surfaces to a minimum thickness of 3.5” (89 mm).

5.5.2.1.4. Wall stud edges may be left exposed.

5.5.2.1.5. Maximum thickness of the SPF is 20” (508 mm) on the underside of roof sheathing or on the vertical wall surfaces.

5.5.2.1.6. SPF insulation may be left exposed to the attic without a thermal barrier, prescriptive ignition barrier, or an intumescent coating.

5. Includes 23/32” (18.2 mm) wood structural panel.
6. 2009 IRC Section R806.4
Technical Evaluation Report (TER)

5.5.2.1.7. Attic shall have access complying with IRC Section R807, horizontally placed in the floor, and shall feature one of the following:

5.5.2.1.7.1. A downward-opening hatch,
5.5.2.1.7.2. A pull down stair or,
5.5.2.1.7.3. Access opening in accordance with IRC Section R807 using Rockfon® Pacific™ 201 Square Edge Ceiling Tile to cover the opening. The Rockfon® Pacific™ 201 ceiling tile shall have a minimum density of 8 pcf, a maximum binder content of 3% and shall be listed as a Class A product in accordance with ASTM E1264.

5.5.2.2. Items penetrating the roof deck or walls, such as skylight wells and venting systems, shall be covered with a minimum of 3\(\frac{1}{2}\)" (89 mm) of Icynene Classic Ultra, or Classic Ultra Select insulation with the following exceptions and conditions:

5.5.2.2.1. The perimeter of penetrating items (annular space) does not require fire caulking. However, for penetrating items not needing full coverage, the perimeter (annular space) of the items must be covered with SPF at a minimum 3.5" thickness.
5.5.2.2.2. For all attic volumes, steel or copper pipes penetrating the roof deck or gable do not need to be covered in SPF.
5.5.2.2.3. Vinyl or other thin plastic flexible ducts or vents may not penetrate the roof deck or gable unless they are covered in SPF with a minimum thickness of 3.5".
5.5.2.2.4. For attics up to 46,080 cu. ft., any schedule 40 (minimum) ABS or PVC vent pipe does not need to be covered in SPF.
5.5.2.2.5. For attics larger than 46,080 cu. ft., schedule 40 (minimum) ABS or PVC vent pipe penetrations shall be covered with SPF at a minimum thickness of 3.5", or may be left uncovered but limited in number and size such that the total area of holes created in the roof deck and gable do not exceed 36 in\(^2\).
5.5.2.2.6. ABS or PVC vent pipes thinner than schedule 40 (for any attic volume) must be covered with the minimum 3.5" of SPF, or may be left uncovered but limited in number and size such that the total area of holes created in the roof deck and gable do not exceed 36 in\(^2\).
5.5.2.2.7. For attics up to 46,080 cu. ft., flexible metallic ducts or vents (aluminum or materials with higher melting/softening points than aluminum) or metallic vent pipes (aluminum or materials with higher melting/softening points than aluminum) penetrating the roof deck or gables do not need to be covered with SPF.
5.5.2.2.8. For attics greater than 46,080 cu. ft., flexible metallic ducts or vents (aluminum or materials with higher melting/softening points than aluminum) or metallic vent pipes (aluminum or materials with higher melting/softening points than aluminum), the roof deck or gables must be protected with the minimum 3.5" of SPF, or may be left uncovered but limited in number and size such that the total area of holes created in the roof deck and gable do not exceed 36 in\(^2\).
5.5.2.2.9. For all attic volumes, vinyl or other plastic HVAC ducts or vents that only penetrate the attic floor do not need to be protected with SPF if the HVAC unit is alarmed to switch off with smoke or heat alarm switches within the attic space. Otherwise, the plastic HVAC duct must be protected by the minimum 3.5" of SPF.
5.5.2.2.10. For attics up to 46,080 cu. ft., flexible metallic HVAC ducts or vents (aluminum or materials with higher melting/softening points than aluminum) that only penetrate the attic floor do not need to be protected with SPF. The HVAC unit does not need to be alarmed to switch off with smoke or heat alarm switches within the attic space for this application.
5.5.2.2.11. For attics greater than 46,080 cu. ft., flexible metallic HVAC ducts or vents (aluminum or materials with higher melting/softening points than aluminum) that only penetrate the attic floor do not need to be protected with SPF if the HVAC unit is alarmed to switch off with smoke or heat alarm switches within the attic space. Otherwise, the flexible metallic HVAC duct must be protected by the minimum 3.5" of SPF.
5.5.2.12. Other items penetrating the roof deck or gable not specifically named above (other than steel or copper) need to be covered in SPF at a minimum 3.5” thickness.

5.5.3. **Application in an Unvented Crawlspace without a Prescriptive Thermal Barrier or Ignition Barrier**

5.5.3.1. When Icynene Classic Ultra, Classic Ultra Select and Classic Plus are applied in unvented crawlspaces conforming to IRC Section R408.3, the:

5.5.3.1.1. SPF shall be applied to the underside of upper surface to a minimum thickness of 3.5” (89 mm).

5.5.3.1.2. SPF shall be applied to vertical wall surfaces to a minimum thickness of 3.5” (89 mm).

5.5.3.1.3. Wall stud edges may be left exposed.

5.5.3.1.4. Maximum thickness of the SPF is 14” (356 mm) on the underside of the upper surface or 3.5” (89 mm) on the vertical wall surfaces.

5.5.3.1.5. SPF insulation may be left exposed to the crawlspace without a thermal barrier, prescriptive ignition barrier, or an intumescent coating.

5.5.3.1.6. Crawlspace access shall be provided in accordance with IRC Section R408.4.

5.5.3.1.7. Enclosures for items penetrating the upper surface or walls, such as plumbing and venting systems, shall be covered with a minimum of 3.5” (89 mm) of Icynene Classic Ultra, Classic Ultra Select or Classic Plus insulation.

5.5.3.2. Where the application exceeds the limitations set forth herein, design shall be permitted in accordance with accepted engineering procedures, experience and technical judgment.

5.6. **Application for Use as an Interior Finish without the Use of a Thermal Barrier or Ignition Barrier When Used with the Addition of No-Burn® Plus ThB Intumescent Coating**

5.6.1. Icynene SPF with a covering of No-Burn® Plus, applied in accordance with Table 4, was tested to NFPA 286 and met the acceptance criteria of IBC Section 803.1.2.1.

5.6.2. When No-Burn® Plus is applied to Icynene SPF in accordance with Table 4, the assembly may be installed without a thermal barrier or ignition barrier in accordance with IBC Section 2603.9.

<table>
<thead>
<tr>
<th>Products</th>
<th>No-Burn® Product Name</th>
<th>Maximum Thickness on Walls and Vertical Surfaces</th>
<th>Maximum Thickness on Ceilings, Underside of Roof Sheathing/Rafters & Floors</th>
<th>Application of No-Burn® Coating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Icynene Classic Ultra & Classic Ultra Select</td>
<td>Plus ThB</td>
<td>6”</td>
<td>7”</td>
<td>18 mils wet (12 mils dry) 89 sq. ft. per gallon</td>
</tr>
</tbody>
</table>

Table 4: Application of No-Burn® to Icynene SPF

6. **Installation:**

6.1. **General**

6.1.1. Installation shall comply with the manufacturer’s installation instructions and this TER.

6.1.2. SPF insulation shall be applied by licensed dealers and installers certified by Icynene, Inc.

6.1.3. A copy of the manufacturer’s published installation instructions shall be available at all times on the jobsite during installation.

6.1.4. In the event of a conflict between the manufacturer’s installation instructions and this TER, the more restrictive shall govern.

6.1.5. Icynene Classic Ultra, Classic Ultra Select and Classic Plus shall be applied to the framing using two-component spray equipment and shall be applied using a 1:1 ratio of Component A and Component B.

6.1.6. The substrate shall be dry and free of frost, ice, rust, oil, grease, dirt or any other substances that may prevent adhesion of the SPF to the substrate.
6.1.7. Icynene Classic Ultra, Classic Ultra Select and Classic Plus are intended for interior use only and are not to be used where they could come in contact with water. Provide protection from weather during and after installation.

6.1.8. Where used as an air barrier in unvented attics, the insulation shall be installed to the minimum thickness required and shall be installed in accordance with the provisions of IRC Section R806.

6.1.9. Icynene Classic Ultra, Classic Ultra Select and Classic Plus may be installed to the required thickness with one pass of the spray equipment. If installation using multiple passes is desired, no cure time is required between passes.

6.1.10. Do not use Icynene Classic Ultra, Classic Ultra Select and Classic Plus inside of electrical or junction boxes.

6.1.11. Icynene Classic Ultra, Classic Ultra Select and Classic Plus shall be installed only when the temperature is at or above 14°F (-10°C).

6.1.12. Insulation shall not be installed in areas where the service temperature is greater than 180°F (82°C).

6.2. Icynene Classic Ultra, Classic Ultra Select and Classic Plus Installation

6.2.1. For general SPF installation guidelines, see the American Chemistry Council’s Guidance on Best Practices for the Installation of Spray Polyurethane Foam.

6.2.2. Icynene Classic Ultra, Classic Ultra Select and Classic Plus shall be installed in accordance with Icynene, Inc.’s installation instructions and this TER.
Technical Evaluation Report (TER)

Figure 2: Icynene Classic Ultra, Classic Ultra Select & Classic Plus Used in an Unvented Attic Space

7. Test and Engineering Substantiating Data:
 7.1. Structural testing of trusses, joists, and rafters for comparison before and after NFPA 286 modified fire testing. The fire testing was performed by QAI Labs in 2014, and the structural testing was performed by SBCRI under contract with Qualtim, Inc.
 7.2. Testing and data in accordance with NFPA 286, modified for unventilated attics and performed by Intertek.
 7.3. Testing and data in accordance with NFPA 286, modified for unventilated attics and performed by QAI Labs.
 7.4. Testing and data in accordance with NFPA 286, modified for unvented attic with penetrations and performed by Priest and Associates.
 7.4.1. Testing and data in accordance with NFPA 286, modified to assess the surface burning performance of Icynene Classic Ultra with a No-Burn® intumescent coating application and performed by QAI Labs.
 7.5. Fire testing of the described attic assembly to a modified version of NFPA 286 to evaluate its performance as an unvented attic with penetrations performed by Priest and Associates.
7.6. Fire testing of Icynene Classic Ultra with No-Burn® intumescent coating to NFPA 286 performed by QAI Labs.

7.8. Engineering analysis of Rockfon® Pacific™ 201 ceiling panels by Priest & Associates.

7.10. Testing showing surface burning characteristics in accordance with ASTM E84 by Bodycote.

7.11. Testing as an air barrier material in accordance with ASTM E2178 by Exova.

7.12. The products evaluated by this TER fall within the scope of one or more of the model, state or local building codes for building construction. The testing and substantiating data used in this TER is limited to buildings, structures, building elements, construction materials and civil engineering related specifically to buildings.

7.13. The provisions of model, state or local building codes for building construction do not intend to prevent the installation of any material or to prohibit any design or method of construction. Alternatives shall use consensus standards, performance-based design methods or other engineered alternative means of compliance. This TER assesses compliance with defined standards, generally accepted engineering analysis, performance-based design methods, etc. in the context of the pertinent building code requirements.

7.14. Some information contained herein is the result of testing or data analysis by other sources, which DrJ relies on to be accurate as it undertakes its engineering analysis.

7.15. DrJ has reviewed the data provided by other professional sources and found them to be credible. This information has been approved in accordance with DrJ’s procedure for acceptance of data from approved sources.

7.16. DrJ’s responsibility for data provided by approved sources is in accordance with professional engineering law.

7.17. Where appropriate, DrJ relies on the derivation of design values, which have been codified into law through codes and standards (e.g., IRC, WFCM, IBC, SDPWS). This includes review of code provisions and any related test data that helps with comparative analysis or provides support for equivalency to an intended end-use application.

8. Findings:

8.1. The testing protocol for this project included:

8.1.1. Structural testing of joists and trusses before application of Icynene Classic Ultra SPF. Testing performed by SBCRI under contract with Qualtim, Inc.

8.1.2. Shipping, and installation of trusses and joists into an attic assembly with subsequent application of Icynene Classic Ultra for the purpose of fire testing the assembly and comparing the structural stiffness of the joists and trusses before and after the fire test. Control specimens were also included in the shipping and assembly to benchmark performance.

8.1.3. Fire testing of the described attic assembly to a modified version of NFPA 286. Testing performed by QAI Labs.

8.1.4. Disassembly of the attic by QAI Labs and shipping of trusses and joists back to SBCRI.

8.1.5. Repeat structural testing by SBCRI to determine the stiffness loss and strength effects of:

8.1.5.1. Shipping and handling, installation and disassembly of the control and the fire tested structural elements.

8.1.5.2. Application of spray foam to these elements.

8.1.5.3. Attic fire testing, including realistic fire temperatures and duration.

8.1.5.4. Comparison of the performance of the control specimens to the attic fire tested specimens.

8.2. There was no measured difference in performance between rafter framing and truss framing in the context of performance post-NFPA 286 fire testing. The comparisons included:
Technical Evaluation Report (TER)

8.2.1. Truss and rafter framing that had been transported and installed in a building.

8.2.2. Truss and rafter framing onto which Icynene Classic Ultra foam had been applied in accordance with standard Icynene application procedures for attics.

8.2.3. Truss and rafter framing subjected to modified NFPA 286 testing of an unvented attic.

8.2.4. Truss and rafter framing compared to control specimens.

8.3. Additional test data and evaluations comparing the fire performance of Icynene Classic Ultra, Classic Ultra Select and Classic Plus in unvented attics and crawlspaces using modified NFPA 286 testing was also provided to prove the similarity of the performance of Icynene Classic Ultra, Classic Ultra Select and Classic Plus and that these products can be used interchangeably.

8.4. The application of Icynene Classic Ultra, Classic Ultra Select and Classic Plus does not compromise the structural performance of standard rafter or truss framing in code compliant unvented attic and crawlspace applications as defined in IRC Section R806.5.7

8.5. IBC Section 104.11 and IRC Section R104.11 (IFC Section 104.9 is similar) state:

Alternative materials, design and methods of construction and equipment. The provisions of this code are not intended to prevent the installation of any material or to prohibit any design or method of construction not specifically prescribed by this code, provided that any such alternative has been approved. An alternative material, design or method of construction shall be approved where the building official finds that the proposed design is satisfactory and complies with the intent of the provisions of this code, and that the material, method or work offered is, for the purpose intended, not less than the equivalent of that prescribed in this code [...]. Where the alternative material, design or method of construction is not approved, the building official shall respond in writing, stating the reasons why the alternative was not approved.

8.6. This product has been evaluated with the codes listed in Section 2, and is compliant with all known state and local building codes. Where there are known variations in state or local codes that are applicable to this evaluation, they are listed here:

8.6.1. Florida – See supplement

8.7. This TER uses professional engineering law, the building code, ANSI/ASTM consensus standards and generally accepted engineering practice as its criteria for all testing and engineering analysis. DrJ’s professional engineering work falls under the jurisdiction of each state board of professional engineers, when signed and sealed.

9. Conditions of Use:

9.1. Where required by the authority having jurisdiction (AHJ) in which the project is to be constructed, this TER and the installation instructions shall be submitted at the time of permit application.

9.2. Any generally accepted engineering calculations needed to show compliance with this TER shall be submitted to the code official for review and approval.

9.3. Design loads shall be determined in accordance with the building code adopted by the jurisdiction in which the project is to be constructed.

9.4. Icynene Classic Ultra, Classic Ultra Select and Classic Plus insulation described in this TER comply with, or are suitable alternatives to, what is specified in the codes listed in Section 2, subject to the following conditions:

9.4.1. The manufacturer’s installation instructions and this TER shall be available on the jobsite for inspection.

9.4.2. The SPF insulation shall be installed in accordance with the manufacturer’s published installation instructions, this TER and the applicable code. If there is a conflict between the installation instructions and this TER, the more restrictive governs.

9.4.3. The SPF insulation shall be separated from the interior of the building by an approved 15-minute thermal barrier, except as noted in this TER.

7 2009 IRC Section 806.4.
Technical Evaluation Report (TER)

9.4.4. When installed in unvented attics without a code-prescribed ignition barrier or thermal barrier, the installation shall meet the conditions outlined in Section 5.5.

9.4.5. The SPF insulation shall meet the minimum thicknesses and densities noted in this TER.

9.4.6. The SPF insulation shall be protected from the weather during and after application.

9.4.7. The SPF insulation shall be applied by licensed dealers and installers certified by Icynene, Inc.

9.4.8. Use of the SPF insulation in areas where the probability of termite infestation is “very heavy” shall be in accordance with IBC Section 2603.8 and IRC Section R318.4 as applicable.

9.4.9. Jobsite certification and labeling of the SPF insulation shall comply with IRC Section N1101.10.1 and N1101.10.1.1 and IECC Section 303.1.1 and 3030.1.1.

9.4.10. A vapor retarder shall be installed in accordance with the applicable code.

9.4.11. The components used to produce Icynene Classic Ultra, Classic Ultra Select and Classic Plus are manufactured in Mississauga, Ontario, Canada, under a quality control program with inspections in accordance with IBC Section 2603.2 and IRC Section R316.2.

9.5. Design

9.5.1. Building Designer Responsibility

9.5.1.1. Unless the AHJ allows otherwise, construction documents shall be prepared by a building designer (owner, registered design professional, etc.) for the building and shall be in accordance with IBC Section 107 and IRC Section R106.

9.5.1.2. The construction documents shall be accurate and reliable and shall provide the location, direction and magnitude of all applied loads. The documents shall be in accordance with IBC Section 1603 and IRC Section R301.

9.5.2. Construction Documents

9.5.2.1. Construction documents shall be submitted to the building official for approval and shall contain the plans, specifications and details needed for the building official to approve such documents.

9.6. Responsibilities

9.6.1. The information contained herein is a product, engineering or building code compliance TER performed in accordance with the referenced building codes, testing and/or analysis through the use of accepted engineering procedures, experience and technical judgment.

9.6.2. DrJ TERs provide an assessment of only those attributes specifically addressed in the Products Evaluated or Code Compliance Process Evaluated section.

9.6.3. The engineering evaluation was performed on the dates provided in this TER, within Dr.J's professional scope of work.

9.6.4. This product is manufactured under a third-party quality control program in accordance with IRC Section R104.4 and R109.2 and IBC Section 104.4 and 110.4.

9.6.5. The actual design, suitability and use of this TER for any particular building is the responsibility of the Owner or the Owner's authorized agent, and the TER shall be reviewed for code compliance by the Building Official.

9.6.6. The use of this TER is dependent on the manufacturer’s in-plant QC, the ISO/IEC 17020 third-party inspection process, proper installation per the manufacturer’s instructions, the Building Official’s inspection and any other code requirements that may apply to assure accurate compliance with the applicable building code.

10. Identification:

10.1. Icynene Classic Ultra, Classic Ultra Select, and Classic Plus described in this TER are identified by a label on the containers bearing the manufacturer’s name, product name, label of the third-party inspection agency, and other information to confirm code compliance.

10.2. Additional technical information can be found at Icynene.com.
11. Review Schedule:

11.1. This TER is subject to periodic review and revision. For the most recent version of this TER, visit djiengineering.org.

11.2. For information on the current status of this TER, contact DrJ Engineering

- Mission and Professional Responsibilities
- Product Evaluation Policies
- Product Approval – Building Code, Administrative Law and P.E. Law
FBC Supplement to TER No. 1406-03
Issued: November 5, 2014
Updated: September 15, 2017

DIVISION: 07 00 00 – THERMAL AND MOISTURE PROTECTION
Section: 07 21 19 – Foamed-in-Place Insulation
Section: 07 27 36 – Sprayed Foam Air Barrier

REPORT HOLDER:
ICYNENE, INC.
6747 CAMPOBELLO ROAD
MISSISSAUGA, ONTARIO, CANADA L5N 2L7
jevans@icynene.com
www.icynene.com

EVALUATION SUBJECT:
Icynene Classic Ultra, Classic Ultra Select & Classic Plus Spray Polyurethane Foam

1. Report Purpose and Scope

1.1. Purpose

1.1.1. The purpose of this Technical Evaluation Report (TER) supplement is to indicate that Icynene Classic Ultra, Classic Ultra Select, and Classic Plus Spray Polyurethane Foam (SPF), recognized in TER No. 1406-03, have also been evaluated for compliance with the codes noted below.

1.2. Applicable code editions

1.2.1. 2014 and 2017 Florida Building Code – Building

1.2.2. 2014 and 2017 Florida Building Code – Residential

1.3. This supplement is subject to renewal concurrently with TER No. 1406-03.

2. Conclusions

2.1. Icynene Classic Ultra, Classic Ultra Select, and Classic Plus SPF, described in TER No. 1406-03, comply with the provisions of the Florida Building Code – Building and the Florida Building Code – Residential, provided the design and installation are in accordance with the International Building Code (IBC) provisions noted in the TER.

2.2. Use of Icynene Classic Ultra, Classic Ultra Select, and Classic Plus SPF for compliance with the High-Velocity Hurricane Zone (HVHZ) provisions of the Florida Building Code – Building and the Florida Building Code – Residential has been evaluated.

2.3. In accordance with Florida Rule No. 61G20-3, Icynene Classic Ultra, Classic Ultra Select, and Classic Plus SPF are outside the scope of the Florida Product Approval system.